Eppur si muove... La terapia nel MONDO LINFOMI Il razionale biologico delle combinazioni nei linfomi non Hodgkin

Luigi Rigacci UOC Ematologia e Centro Trapianto Cellule Staminali AO San Camillo Roma

ROMA, 26 MAGGIO 2022

Disclosures, Luigi Rigacci

Company name	Advisory board	Educational activities/Lecture fees
Astra Zeneca		x
Gilead-Sciences	X	x
Incyte		X
Janssen-Cilag	x	X
Novartis	x	
Roche	x	x
Gentili		x
Takeda	x	x
Abbvie	x	x
Sandoz		X

ROMA, 26 MAGGIO 2022

Once upon a time.....

MACOP-B

alterning weekly myelotoxic drugs with non-myelotoxic drugs!

MACOP-B Chemotherapy for the Treatment of Diffuse Large-Cell Lymphoma

PAUL KLIMO, M.D.; and JOSEPH M. CONNORS, M.D.; Vancouver, British Columbia, Canada

Annals of Internal Medicine. 1985;102:596-602.

Ours are coming!

Coiffier, NEJM 2002

immunotherapy added a great benefit

Heterogeneity of Outcomes in DLBCL

Two broad strategies:

- Target both subgroups
 - Possibly overtreating RCHOP "sufficient group"
- Target RCHOP "insufficient" group provided
 - It can be identified
 - It can be targeted

*Patients with DLBCL treated with R-CHOP-21 at BCCA (n = 1,476).

Sehn LH. ASH Education Book. 2012;1:402-9.

Targeting "Insufficient" R-CHOP Group

Evaluation of unfavourable DLBCL subsets: Cell of Origin profile subgroups by GEP

• Lenz G, et al. N Engl J Med. 2008;359:2313-23.

Eppur si muove... La terapia nel MONDO LINFOMI

ROMA, 26 MAGGIO 2022

The key signalling pathways implicated in GCB DLBCL

Roschewski M, Staudt LM, Wilson WH, Nat. Rev. Clin. Oncol. 2013.

- ✓ Loss of PTEN (Phosphatase and tensin homologue) expression in 55% of cases → activation of PI3K/Akt/mTOR signalling pathway; → small-molecule inhibitors can be effective in GCB with decreased PTEN expression.
 - BCL-6 is frequently activated in GCB DLBCL; BCL6 deregulation results in enhanced tumour proliferation via decreased expression of the cell-cycle checkpoint proteins p21 and p27, impaired DNA damage response through decreased p53 expression, impaired cellular metabolism and resistance to apoptosis. \rightarrow **inhibitors that target key co-repressor proteins of BCL-6.** In normal B cells, BCL-6 suppresses transcription of the MYC oncogene.
- BET bromodomain inhibitors represent a novel strategy of epigenetic regulation of MYCdriven tumours.
- ✓ BCL2 translocations are observed in up to 35% of GCB DLBCL cases, resulting in inhibition of apoptosis → Inhibitors of BCL-2.

Eppur si muove... La terapia nel MONDO LINFOMI

The key signalling pathways implicated in ABC DLBCL

Eppur si muove... | La terapia nel MONDO LINFOMI

Regulation of BCR signaling and the therapeutic inhibition of BTK and PI3K in DLBCL

- ✓ ABC-DLBCL displays chronic active
 BCR signaling resulting in constitutive
 NF-kB activity
- In contrast to antigen and chronic active BCR signaling, the antigenindependent signal, termed 'tonic BCR signaling', is mediated by PI3K + PI3K /AKT/mTOR, but not the NF-kB pathway, to promote the proliferation and survival of malignant B cells. Genomic data have shown that GCB-DLBCL lines exclusively use tonic BCR signaling.

Profitos Peleja et al. Cancers 2022.

Attempt to improve the outcome with the addition of novel drugs with or after R-CHOP: overall no significative advantage

Drug	Regimen	Subtype or not	Study	Results
			R-	CHOP + X as induction
Bevacizumab ¹	RA-CHOP	DLBCL	Main	No advantage (PFS and OS)
Bortezomib ²	BorR-CHOP	DLBCL	ReMoDL-B	No PFS advantage
lbrutinib ³	IR-CHOP	Non-GCB DLBCL	Phoenix	No EFS advantage
Lenalidomide ⁴	R ² -CHOP	ABC-DLBCL	Robust	No PFS advantage
Venetoclax ⁵	VR-CHOP	DLBCL	Cavalli	Promising results
			R-CH	OP + X as maintenance
Rituximab ⁶	Rituximab	DLBCL	NHL-13	No EFS advantage 3- yr
Enzanstaurin ⁷	Enzanstaurin	DLBCL	Prelude	No DFS advantage 4yr
Everolimus ⁸	Everolimus	DLBCL	Pillar-2	No DFS advantage 2yr
Lenalidomide ⁹	Lenalidomide	Elderly DLBCL	Remarc	PFS advantage, no OS
1. Seymour JF et al, Haematologica 2014; 2. Davies A et al, Lancet Oncol 2019; 3. Younes A et al, J Clin Oncol 2019; 4. Vitolo U et al, Hematol Oncol 2019; 5. Morschhauser F at al, Blood 2021; 6. Jagger II et al, Haematologica 2013; 7. Crump M et al. J Clin Oncol 2016; 8. Witzig T et al, App Oncol 2018; 9. Thioblemont C et al. J Clin Oncol 2019				

Moving beyond R-CHOP... targeting ABC DLBCL

R-CHOP + Bortezomib

R-CHOP + iBTK

R-CHOP + Lenalidomide

Davies A, et al. Lancet Oncol 2019; Younes A, et al. J Clin Oncol 2019; Nowakowski G, et al. J Clin Oncol 2021.

Where are we wrong? Should we still care about COO?

- Yes: the prognosis of ABC is still unsatisfactory
- Yes: subgroups of ABC patients benefit from the addition of specific drugs as ibrutinib in young and lenalidomide in high risk
- No: ABC alone is not the best target; DLBCLs are more heterogenous, mutational alterations, etc
- Maybe: ibrutinib or lenalidomide are not the best drugs, we need better drugs, novel-novel combinations

•to be continued.

Eppur si muove... | La terapia nel MONDO LINFOMI

Genetically-distinct DLBCL Subsets are Predictive for Outcome

Genetically-distinct DLBCLs

Predictive for Outcome

- Genetic signatures comprised of
 - Mutations
 - Somatic copy number alterations (SCNAs)
 - Structural Variants (SVs)

C1 vs. C5 DLBCLs – Two Genetically Distinct ABC-DLBCLs

• Different types and incidences of MYD88 mutations

C5 DLBCLs - highest cAID activity

tumors passaged through the GC

C1 DLBCLs - low to absent cAID activity

suggestive of extrafollicular origin

→ C1 and C5 ABC-type DLBCLs arise by distinct pathogenetic mechanisms.

Evolving Strategies in the Treatment of DLBCL

Drugs by Molecular Classification Subgroups

ry D	Genetically defined category
ibrutinib, acalabrutinib, venet	MCD/C5
ibrutinib, bortezomib, carfilz	BN2/C1
venetoclax, tazemetostat, idelalisib, copanlisib, duvelisib, umbr	EZB/C3
idelalisib, copanlisib, duvelisib, bortezomib, carfilzomib, ruxo	C4

MCD: MYD88^{L265P} and CD79B mutations **/ C5** predominantly ABC BN2 : BCL6 fusions and NOTCH2 mutations **/ C1** both ABC and GCB N1 : NOTCH1 mutations predominantly ABC EZB : EZH2 and BCL2 mutations **/ C3** predominantly GCB

Genetic Subtype Guided Rituximab-based Immunochemotherapy Improves Outcome in Newly Diagnosed Diffuse Large B-cell Lymphoma: First Report of a Randomized Phase 2 Study

<u>Subtype</u>	Drug X	•	128 patients:	:	
MCD, BN2	ibrutinib		NOS - 50	TP-53 – 21	
			MCD – 26	EZB – 3	
N1, NOS	lenalidomide		BN2 – 23	N1 - 3	
EZB	tucidinostat (HDAC) inhibitor	•	Outcome: CR 1 yr. PFS	<u>CHOP-R</u> 65% 79%	
TP53	decitabine				<u>CHOP-R-X</u> 85% 96%

Mechanisms of Action for recent approved novel therapy in R/R DLBCL

Eppur si muove... La terapia nel MONDO LINFOMI

ADC + R-chemotherapy

Polatuzumab Vedotin in Relapsed or Refractory **Diffuse Large B-Cell Lymphoma**

Laurie H. Sehn, MD, MPH¹; Alex F. Herrera, MD²; Christopher R. Flowers, MD, MSc³; Manali K. Kamdar, MD, MBBS⁴; Andrew McMillan, PhD⁵; Mark Hertzberg, MBBS, PhD⁶; Sarit Assouline, MDCM, MSc⁷; Tae Min Kim, MD⁸; Won Seog Kim, MD, PhD⁹; Muhit Ozcan, MD¹⁰; Jamie Hirata, PharmD¹¹; Elicia Penuel, PhD¹¹; Joseph N. Paulson, PhD¹¹; Ji Cheng, PhD¹²; Grace Ku, MD¹¹; and Matthew J. Matasar. MD1

J Clin Oncol 38:155-165. @ 2019

ORIGINAL ARTICLE

Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma

H. Tilly, F. Morschhauser, L.H. Sehn, J.W. Friedberg, M. Trněný, J.P. Sharman, C. Herbaux, J.M. Burke, M. Matasar, S. Rai, K. Izutsu, N. Mehta-Shah, L. Oberic, A. Chauchet, W. Jurczak, Y. Song, R. Greil, L. Mykhalska, J.M. Bergua-Burgués, M.C. Cheung, A. Pinto, H.-J. Shin, G. Hapgood, E. Munhoz, P. Abrisqueta, J.-P. Gau, J. Hirata, Y. Jiang, M. Yan, C. Lee, C.R. Flowers, and G. Salles

N Engl | Med 2022;386:351-63.

FIRST LINE

R-CHOP

42

NE

NE

...adding mAb antiCD19?

Loncastuximab tesirine: humanized anti-CD19 antibody, stochastically conjugated through a cathepsin-cleavable valine-alanine linker to a pyrrolobenzodiazepine (PBD) dimer toxin causing DNA crosslinking.

Mechanism of action of Lonca

Tafasitamab + lenalidomide in R/R DLBCL

Single arm phase II study L-Mind

Median follow-up:19.6 months

Salles G et al. Lancet Oncology 2020

Phase 2 Study of Loncastuximab Tesirine Plus Ibrutinib in RR-DLBCL (LOTIS-3)

Carlo-Stella C, Abs#0054, ASH 2021

Phase 2 Study of Loncastuximab Tesirine Plus Ibrutinib in RR-DLBCL (LOTIS-3)

Median Lonca cycles: 2 (range: 1–6)		Characteristic	Non-GCB (n=22)	GCB (n=13)	All patients (n=35)
Median ibr	Median ibrutinib cycles: 3.5 (range: 1–15)		72 (19–82)	66 (53–82)	72 (19–82)
		Prior systemic therapies, n Median (range)	3 (1–6)	3 (2–5)	3 (1–6)
100 80	 Partial Response Complete Response 				
60	_	46,2			
40	27,3			34,3	
20	20 - 18,2	30,8		22,9	
0	Non-GCB DLBCL (n=22)	GCB DLBCL (n=13)	A	ll DLBCL (n=35)	
ORF (n/N) (95% Cl) ^t	45.5% (10/22) (24.4, 67.8)	76.9% (10/13) (46.2, 95.0)	(3	57.1% (20/35) 9.4, 73.7)	

Carlo-Stella C, Abs#0054, ASH 2021

Emerging therapies: Bispecific Antibodies

Investigational CD20×CD3 bispecific antibodies for B-cell lymphomas:

FDA BTD for R/R FL (2020)

CD20xCD3 bispecific antibodies + SoC

Rational combinations of targeted therapies

By courtesy of Salles G, ICML 2021

ROMA, 26 MAGGIO 2022

Glofitamab in Combination with Polatuzumab Vedotin: Phase Ib/II in 59 pts with R/R Diffuse Large B-Cell Lymphoma (DLBCL)

Hutchings M et al. Abs#525, ASH 2021.

Eppur si muove... | La terapia nel MONDO LINFOMI

Glofitamab in Combination with Polatuzumab Vedotin: response rate and adverse events

Hutchings M et al. Abs#525, ASH 2021.

Eppur si muove... | La terapia nel l

ROMA, 26 MAGGIO 2022

topMIND: PHASE 1B/2A BASKET STUDY TO EVALUATE TAFASITAMAB^a AND THE PI3Kδ INHIBITOR PARSACLISIB IN RELAPSED/REFRACTORY NON-HODGKIN LYMPHOMA OR CHRONIC LYMPHOCYTIC LEUKAEMIA¹

Adult patients with R/R B-cell malignancies, including DLBCL, MCL, FL, MZL and CLL/SLL, with ECOG PS 0–2 and ≥2 prior systemic antilymphoma/antileukemia therapies (N=100) Tafasitamab 12 mg/kg IV QW (Cycles 1–3) then Q2W (Cycle 4 onward), plus parsaclisib 20 mg QD (Cycles 1–2) then 2.5 mg QD (Cycle 3 onward)

Phase 1b	n=10
Phase 2a	n=10

R/R MCL n=10 n=10 R/R FL R/R MZL n=10 n=10 n=10 n=10

R/R CLL/SLL n=10 n=10

Primary Endpoint:b

- Phase 1b: incidence and severity of TEAEs and incidence of DLTs
- Phase 2a: ORR

Key Secondary/Exploratory Endpoints:b

- PK parameters of tafasitamab in combination with parsaclisib
- PK parameters of parsaclisib in combination with tafasitamab
- CRR, DOR, PFS, OS, MRD

- Immunogenicity of tafasitamab
- Cytokine, immune cell and tumour microenvironment response to tafasitamab plus parsaclisib
- Molecular markers for response or resistance

frontMIND: STUDY DESIGN (MORPHOSYS TRIAL)

INTERNATIONAL, PROSPECTIVE, OPEN-LABEL PHASE 3 STUDY IN 1L DLBCL AND HIGH-GRADE B-CELL LYMPHOMA

1L, first-line; aaIPI, age-adjusted International Prognostic Index; d, day(s); DLBCL, diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group performance status; EFS, event-free survival; IPI, International Prognostic Index; Q21D, every 21 days; R, randomisation; R-CHOP, rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine and prednisolone.

Conclusions

- R-CHOP is still the standard of care in DLBCL but we need to move forward to improve the outcome of our patients.
- COO is predictive of the outcome with ABC subtype having a worst prognosis in terms of systemic and also CNS progression but we cannot based anymore on this simple subgrouping
- A single target approach have failed underlining the molecular complexity of DLBCL
- A more accurate recognition of unfavourable DLBCL subsets is recommended to better tailor the treatment
- New study designs potentially focused on mutational alterations with combination of multiple novel drugs may have a greater chance of success.
- Novel-novel combinations as anti-CD19 and immunomodulators, or bispecific antibodies + different novel biological drugs or chemoimmunotherapy represent a step forward the cure of all DLBCL

Eppur si muove... La terapia nel MONDO LINFOMI

ROMA, 26 MAGGIO 2022

